The Crystal Structure of Niobium Selenide Nb₂Se₉ from Twin-Crystal Data

BY A. MEERSCHAUT, L. GUÉMAS, R. BERGER* AND J. ROUXEL

Laboratoire de Chimie Minérale A, LA 279, 2 rue de la Houssinière, 44072-Nantes CEDEX, France

(Received 28 June 1978; accepted 10 April 1979)

Abstract

Table 1. Powder diffraction data for Nb₂Se₀

Nb₂Se₉ crystallizes in the triclinic system, space group P1, with $a = 8 \cdot 1829$ (6), $b = 8 \cdot 3230$ (6), $c = 13 \cdot 084$ (1) Å, $\alpha = 120 \cdot 893$ (6), $\beta = 124 \cdot 017$ (7), $\gamma = 92 \cdot 274$ (8)°, Z = 2, $d_m = 5 \cdot 26$ (1), $d_x = 5 \cdot 29$ Mg m⁻³. The structure has been determined from a twinned crystal from 301 non-overlapping independent reflexions. The refinement of the positional and thermal parameters has yielded a reliability factor $R = 0 \cdot 11$. The geometrical aspects of the structure reveal marked one-dimensional character. Channels between the niobium-selenium chains are observed.

Introduction

Three niobium selenides with approximate composition NbSe₄ were initially reported (Selte & Kjekshus, 1964). However, it has recently been shown that two of these are in fact Nb₂Se₉ (Guémas, Meerschaut & Palvadeau, 1975) and INb₃Se₁₂ (Meerschaut, Palvadeau & Rouxel, 1977).

Crystallographic characterization

Nb₂Se₉ was prepared by direct combination of the elements in sealed silica tubes at temperatures ranging from 773 to 873 K (Guémas et al., 1975). The resulting needle-shaped crystals permitted the determination of the symmetry and approximate lattice parameters. The latter were refined by the least-squares method using powder data obtained from a Guinier-Hägg focusing camera with strictly monochromatized Cr $K\alpha_1$ radiation ($\lambda = 2.28975$ Å). Silicon was used as an internal calibration standard, assuming a = 5.431065Å (Deslattes & Henins, 1973). The X-ray powder intensity data were obtained from measurements on films with a SAAB model 2 automatic film scanner adapted for this purpose (Malmros & Werner, 1973; SAAB, 1967). Table 1 shows the results of the refinement and intensity measurements.

Data were measured using a Guinier-Hägg camera with Cr K_{ℓ_1} radiation. Intensities are on a relative numerical scale.

d_{obs}	$d_{\rm calc}$	h k l	I/I_0	$d_{\rm obs}$	d_{calc}	h k l	<i>I/I</i> 0
8.249	8.271	001	28	2.7411	2.7418	$2\bar{2}1$	
6.348	6.343	010	93	2.7363	2.7384	033	18
6.030	6.024	100	49	2.7111	2.7111	024	8
5.940	5.939	110	42	2.5667	2.5678	133	21
5.649	5.648	112	6		(2.5578	104	
5.0452	5.0450	111	5	2.5572	2.5576	134	100
4.9728	4.9702	111	4	2.5428	2.5434	314	15
4.1349	4.1357	002	3	2.5293	2.5304	304	8
4.0771	4.0781	Ž O 2	24	2.5122	2.5129	313	16
3 7439	3.7447	121	2	2.4984	2.4992	014	32
3.5893	3.5880	Ī O 3	5	2.4864	∫2.4867	034)	40
3.5582	3.5595	203	3	2.4004	2-4850	313)	42
3.5200	3.5211	122	4	2.4740	2.4743	021	2
3.4846	3.4828	013)	20	2.3897	2.3899	120	17
3.4717	3.4701	023)	30	2 2620	2.3631	130)	22
3.4520	3.4546	212	6	2.3030	2.3627	201	23
3.4071	3.4065	212	2	2.3446	2 • 3450	222	1
3.3016	3.3005	112	9	2.3357	2.3363	210	2
3.2795	3.2791	122	6	2.3283	2.3280	231	3
3.1731	3.1716	020	6	2.2973	2.2967	230	5
2 1 1 2 4	(3.1135	124	52	2.2862	2.2860	312	4
5-1154	3.1136	114)	55	2.2508	2.2512	322	6
3.0118	3.0119	200	3	2.2316	2.2321	310	21
2.9697	2.9693	220	3	2.2207	2.2211	324	40
2.8986	2.9003	211	1	2.1962	2.1954	314	9
2.8247	2.8242	224	7	2.1136	2.1135	231	13
2.8108	2.8099	223	40	2.1058	2.1050	134	21
2.7770	2.7775	213	34	2.0850	2.0850	223	5
2.7606	2.7605	211	14				

In our attempts to determine the structure of Nb_2Se_9 we unfortunately found that all the crystals we tested exhibited twinning. Since the crystals are opaque and show a metallic lustre, an ordinary polarizing microscope was of no use in deciding which crystals might be non-twinned. Even after breaking the crystals into smaller fragments we could not select any which were not twinned, as was revealed by X-ray diffraction. Moreover, the crystals are ductile and were easily deformed by such treatment.

We therefore undertook a study by film techniques (Weissenberg multiple film) which allowed us to distinguish the relative intensities coming from the twin individuals, after having selected an arbitrary axis. In order to increase the resolution radiation with as long a wavelength as possible was required. However, this choice limits the number of diffracted lines. The

© 1979 International Union of Crystallography

^{*} Permanent address: University of Uppsala, Institute of Chemistry, Box 531 S-751 21 Uppsala, Sweden.

diffraction intensity data were recorded in equiinclination Weissenberg geometry with Cu $K\alpha$ radiation. Photographs taken after a rotation about the c axis indicated the twin orientation. The two reciprocal lattices from the twin individuals are oriented as shown in Fig. 1. As the three axes must form a right-handed set, C_1^* is found to be upward and C_2^* downward. Thus the crystal was twinned by pseudo-merohedry.

The crystal used for the structure determination had the approximate dimensions $1.60 \times 0.02 \times 0.01$ mm. Because of the twinning, no acceptable absorption correction could be performed. Since $\mu = 54.7$ mm⁻¹, neglecting absorption is likely to have introduced systematic errors.

301 non-overlapped independent reflexions were measured with the aid of a Nonius microdensitometer. When the spots were not well separated, the intensities had to be estimated visually for some 50 reflexions. All intensities were corrected for Lorentz and polarization effects.

Interpretation of the three-dimensional Patterson function allowed us to identify all the atomic positions in the cell and to form a reasonable picture of the structure. The atoms were assigned to the 2(i) positions in space group $P\bar{1}$.

The subsequent refinement of the structure was performed using the SFLS-5 program (Prewitt, 1966). The atomic scattering factors were calculated according to the technique devised by Vand, Eiland &

Fig. 1. hk0 reciprocal lattice section showing the twin type. The reciprocal lattice of unit (1) is drawn with full lines and full circles. That of unit (2) is drawn with dashed lines and open circles. The b^* axes are common to both.

Table 2. Final structure data for Nb₂Se₉

Standard deviations are given in parentheses. All atoms were assigned the position 2(i).

	x	у	Z	<i>B</i> [·] (Ų)
Nb(1)	0.049 (2)	0.034 (2)	0.136 (2)	0.3 (3)
Nb(2)	0.982(2)	0.036 (2)	0.398 (2)	0.1 (3)
Se(1)	0.449(3)	0.215(3)	0.417(3)	1.3 (5)
Se(2)	0.361(3)	0.204(3)	0.687 (3)	0.4 (4)
Se(3)	0.309 (2)	0.123(3)	0.914(2)	0.0(3)
Se(4)	0.194 (3)	0.340(3)	0.152(3)	0.5(4)
Se(5)	0.156 (3)	0.337(3)	0.417(3)	1.5 (5)
Se(6)	0.113(3)	0.333(3)	0.676 (3)	0.8(4)
Se(7)	0.823(3)	0.188(3)	0.006 (3)	0.9 (4)
Se(8)	0.796 (2)	0.108(2)	0.700 (2)	0.0 (3)
Se(9)	0.736 (3)	0.194 (3)	0.281 (2)	0.6 (4)

Pepinsky (1957), as modified by Forsyth & Wells (1959).

$$f_i = A_i \exp\left[-a_i (\sin \theta/\lambda)^2\right] + B_i \exp\left[-b_i (\sin \theta/\lambda)^2\right] + C_i$$

The constants in this formula corresponding to Nb⁰ and Se⁰ were taken from Moore (1963). Values for the anomalous-dispersion corrections were those in *International Tables for X-ray Crystallography* (1962).

The final refinement on F of the positional parameters, scale factors and isotropic temperature factors yielded the R value $R = \sum (||F_o| - K|F_c||)/\sum |F_o| = 0.11$.

The relatively high R value is probably due to the difficulties encountered in working with twin data. The absence of an absorption correction is also likely to have affected R. The systematic errors are partly reflected in the thermal parameters but do not affect the positional parameters to a large extent. It was not considered worth abandoning the centrosymmetrical description. Accordingly, the final coordinates and isotropic temperature factors as refined in space group PI are presented in Table 2.*

Description of the structure

Fig. 2 shows the projection of the structure on the xy plane, partly illustrating the channels in the structure.

The Nb atoms form non-linear chains along the c axis as illustrated in Fig. 3. In these, long (3.76 Å) and short (2.89 Å) intermetallic distances alternate. The shortest distance $[Nb(1)-Nb(1^{1})$ and $Nb(2)-Nb(2^{1})]$ characterizes a Nb-Nb pair. It is compatible with the value of 2.94 Å found in the ternary selenide Nb₃Se₅Cl₇ (Rijnsdorp, 1978). The Nb-Nb distances between

^{*} A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34363 (2 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. Crystal structure of Nb₂Se₉ projected on the xy plane; superscript (i) refers to the centrosymmetric position $\bar{x}, \bar{y}, \bar{z}$.

neighbouring chains are equal to the a and b parameters, *i.e.* 8.1829 and 8.3230 Å, respectively.

The Se atoms appear as Se₂ and Se₅ units. The Se atoms lie more or less in planes approximately $\frac{1}{4}c$ apart. Each Nb atom is surrounded by one Se₅ and two Se₂ units as illustrated in Fig. 3. According to the interatomic distances, given in Table 3, each Nb atom is coordinated to eight Se atoms. Although nonequivalent, Nb(1) and Nb(2) hardly differ as regards their coordination geometry, and the averages of their eight respective Nb–Se distances are equal (2.66 Å).

Nb can be considered to exhibit a bicapped-trigonalprismatic coordination. Trigonal prisms are also found in the two binary selenides NbSe₂ (Kadijk, 1969) and NbSe₃ (Meerschaut & Rouxel, 1975). However, the coordination numbers and the linking of the prisms are different. As can be inferred from Fig. 3, the centrosymmetrically related prisms share one quadrilateral face and enable a short Nb–Nb distance to form. These Nb₂Se₁₂ 'double prisms' are in turn connected by sharing three Se atoms at each end, forming a plane perpendicular to the Nb chain in concordance with the overall composition Nb₂Se₉. The details of these connections are shown in Fig. 4.

The Se atoms taking part in the shared quadrilateral faces form Se₂ units (probably Se₂²⁻) with shorter interatomic distances than are found in the buckled Se₅ chain. The latter distances are quite compatible with those found in the other niobium selenides and are as expected from the Se covalent radius of 1.16 Å (Pauling, 1960).

Comparison with other compounds

 Nb_2Se_9 is a new example of a pseudo one-dimensional compound presenting Nb—Nb pairs forming a chain. In NbSe₃, the intermetallic distances are longer than the metallic contacts although the Nb atoms form an evenspaced chain. However, the corresponding sulphide NbS₃ permits pair formation (Rijnsdorp, 1978). In the ternary compound INb_3Se_{12} (Meerschaut *et al.*, 1977), there are also Nb chains broken up into metal-atom pairs. Nb is coordinated to eight Se atoms in a slightly distorted rectangular antiprismatic arrangement, the Se atoms being attributed to Se_2^{2-} units. The I atoms are incorporated between the chains.

Formally, a few 'one-dimensional' niobium selenides can be discussed from a common stand-point, all compounds being derived from the hitherto hypothetical compound NbSe₄, which is built up of Nb chains enclosed by Se₄ units. With this description the chain can be written as ...NbSe₄NbSe₄.... The chain in

Fig. 3. (a) One chain of Nb₂Se₉ projected along the c axis. Short Nb-Nb and Se-Se distances are denoted by full lines, emphasizing Nb₂ pairs, Se₂ and Se₅ units. (b) Stereoscopic view as given by ORTEP Johnson (1965). The bicapped-trigonalprismatic coordination is shown.

Table 3. Interatomic distances (Å) in Nb₂Se₉

Standard deviations are given in parentheses. The superscript (i) refers to the centrosymmetrical position.

Nb(1)-Nb(2)	3.76 (3)	Nb(2)-Se(2)	2.64 (2)		
Nb(1)Nb(1 ¹)	2.89 (3)	-Se(5)	2.66 (4)		
$Nb(2)-Nb(2^{i})$	2.88 (3)	-Se(6)	2.58 (2)		
		$-Se(2^{i})$	2.62 (3)		
Nb(1)-Se(4)	2.62 (4)	$-Se(6^i)$	2.63(3)		
-Se(5)	2.70 (3)	$-Se(3^{l})$	2.72 (2)		
-Se(7)	2.63(3)	-Se(8 ⁱ)	2.76 (3)		
-Se(4 ⁱ)	2.63 (2)	-Se(9)	2.64 (3)		
$-Se(7^{i})$	2.60(3)				
-Se(8 ⁱ)	2.70 (3)	Se(4)-Se(7)	2.28 (3)	Isolated pairs	
Se(1)	2.64 (2)	Se(2)-Se(6)	2.30 (3)		
-Se(3')	2.72 (3)				
		$Se(8^{i})-Se(1)$	2.34(3)	Delugation	
		Se(1)-Se(5)	2.64 (4)	Polyanion	
		Se(5)-Se(9)	2.66 (3)	Constituted by	
		$Se(9)-Se(3^{i})$	2.36(3)	ive se atoms	

Fig. 4. The Se atom arrangement between Nb(1)–Nb(2) and $Nb(2)-Nb(2^{1})$.

Fig. 5. The Nb₂Se₉ and NbSe₂Cl₂ structures (Rijnsdorp, 1978). 'Nb₂Se₄' cages which are common to both these structures are shown.

 $INb_{3}Se_{12}$ is written in a similar manner while that in $Nb_{2}Se_{9}$ is described as ... $NbSe_{4}NbSe_{5}...$ The ternary selenide $NbSe_{2}Cl_{2}$ (Rijnsdorp, 1978) also contains

chains, these being in the form $\dots NbSe_4NbCl_4\dots A$ common structural unit for the existing compounds is an octahedral Nb_2Se_4 'cage' (cf. Fig. 5) built up of Se_2 and Nb_2 pairs.

The 'one-dimensional' compound is particularly interesting as regards the possibility for chemical intercalation in empty channels. Murphy, Trumbore & Carides (1977) have reported intercalation in Se-rich niobium selenides both by electrochemical and *n*-butyllithium preparative techniques. These results have been interpreted as being due to the formation of a new phase with the composition limit $Li_8Nb_2Se_9$.

One of us (AM) would like to thank Professor Stig Rundqvist for useful discussions during the author's stay at the Inorganic Department of the Institute of Chemistry, University of Uppsala. We are also grateful to Dr Jaap Folmer, Laboratoria voor anorganische chemie, Rijksuniversiteit, Groningen, for his help in preparing the ORTEP plot.

References

- DESLATTES, R. D. & HENINS, A. (1973). *Phys. Rev. Lett.* **31**, 972.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412-415.
- Guémas, L., Meerschaut, A. & Palvadeau, P. (1975). C. R. Acad. Sci. 281, 297–299.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 214. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KADIJK, F. (1969). PhD Thesis, Univ. of Groningen, The Netherlands.
- MALMROS, G. R. & WERNER, P. E. (1973). Acta Chem. Scand. 27, 493-497.
- MEERSCHAUT, A., PALVADEAU, P. & ROUXEL, J. (1977). J. Solid State Chem. 20, 21–27.
- MEERSCHAUT, A. & ROUXEL, J. (1975). J. Less-Common Met. **39**, 197–203.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169-1175.
- MURPHY, D. W., TRUMBORE, F. A. & CARIDES, J. N. (1977). J. Electrochem. Soc. 3, 325–329.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PREWITT, C. T. (1966). SFLS-5. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- RIJNSDORP, J. (1978). PhD Thesis. Univ. of Groningen, The Netherlands.
- SAAB (1967). Film Scanner Manual SAAB AB, Datasaab Linköping, Sweden.
- SELTE, K. & KJEKSHUS, A. (1964). Acta Chem. Scand. 18, 697.
- VAND, T., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303–306.